Building understanding of the dangers of poor indoor air quality and actions to take or 'Plan B': seal the building and get a good filter

Camfil Farr Road Show: London 13 October 2011

Simon Birkett, Founder and Director, Clean Air in London <u>www.cleanairinlondon.org</u> <u>www.twitter.com/CleanAirLondon</u>

Camfil Farr Road Show and launch of campaign to build understanding of indoor air quality initially in London

Welcome

Presentations and questions

Indoor air quality

CityAir

Lab stations

Why air filters are needed How energy costs can be saved Removing ozone gases Visual performance demonstration

Close

Summary

- Outdoor (or ambient) air quality is poor in cities
- Indoor sources (e.g. cooking) can make it worse inside
- Some of the basics: technical matters; relative size; and numbers, surface area and mass
- Health impacts: effects; exposures; sources; and costs
- Policy measures than could make a positive difference
- Current standards for air filters
- New campaign supported by Camfil Farr: let's start by asking one question

We can protect ourselves from 90% of air pollutants for up to 90% of the time

If your office has a mechanical ventilation system or air conditioning (i.e. it is likely to contain the necessary ducting) please ask your employer:

> "Does our ventilation system include regularly maintained air filters that comply with European guideline EN 13779 and, if not, why not?"

> Any questions: visit <u>www.camfilfarr.co.uk</u> or call 01706 238 000

Photo of soot particles in air filter

Photo: Lennart Nilsson

Ambient air quality

- Dangerous airborne particles ($PM_{2.5}$ and PM_{10}). Nitrogen dioxide (NO_2). Ozone (O_3). Diesel is a particular problem
- Twice WHO guideline levels for NO₂ and PM₁₀
- Around PM₁₀ legal limit but twice NO₂ legal limit in London
- 'Pure' number: 4,267 attributable deaths; average 11.5 years
- More likely: all 15,800 cardiovascular deaths; average 3 years
- 1,148 schools near roads carrying over 10,000 vehicles per day
- NO₂ is <u>not</u> just a molecule: it's easily measured and strongly correlated with other toxic combustion gases
- 'Year of Air' in 2013: we need continuity and the further tightening of health and legal protections for air quality

Indoor air quality: Some key facts

- European citizens spend on average over 90% of their time indoors
- 75% or more of the health impact of outdoor or 'ambient' air pollution can therefore occur indoors (Source: EnVIE 2010 p82)
- Indoor concentrations of some pollutants can be much higher than outdoor (e.g. 10 or 20 times higher in the case of formaldehyde)
- We can use air filters to protect ourselves from 90% of air pollutants for up to 90% of the time
- European standard EN 13779 specifies the required filter performance for good indoor air quality in non-residential buildings taking into consideration outdoor air quality
- Second hand smoke (ETS) is still an issue e.g. children in homes

Indoor air quality: Some technical matters

- Every day we eat about 1kg of food, drink 2-3kg (litres) and breathe around 20-30kg of air
- Particles and gases
- Particle size 1,000 nm = 1 μ
- Particle mass concentration μg/m³
- Particle numbers
- Particle number concentration
- Particle surface area
- Nanoparticles gradually cluster together

Photo of soot particles in lung tissue

Photo: Lennart Nilsson

Indoor air quality: Relative size of particles

Human hair: 70 μ m

Spores: $3-50 \ \mu m$

Pollen: 20-100 μm

Airborne particles: < 1 μ m

Measurement of particle concentrations from different activities

Particles with size between 20nm and about $1\mu m$ were measured at maximum concentration (number of particles per cubic centimeter) in a test chamber with ventilation corresponding to a 14 m² room with 1.7 air changes per hour i.e. about 3 times the normal standard

Iron with steam on cotton sheets	7 200	
Scent Spray	29 900	
Scented candles	69 600	Dice
Candles (paraffin)	241 500	
Electric hot plate (fell after 6 min)	111 500	
Radiator (dropped after 11 min)	218 400	
Vacuuming with bag	21 400	
Cigarette smoking	213 300	
Frying mincemeat	150 900	

Källa: Socialstyrelsen - Partiklar i inomhusmiljön (2006)

Typical engine exhaust mass and number weighted size distributions

If you brought together the mass of nanoparticles floating in the air around us, their area would be thousands of times greater than that of the heavier particles. The red graph shows that 99 per cent of the particles in the environment are nanoparticles. Those around 2,5µm and larger are few in number but weigh more. The nanoparticles gradually clusters together and form larger particles.

Source: D.B. Kittleson et al 2001

London - 13 October 2011

Whitby diagram: up to 99% of ambient airborne particles (by number and surface area) are less than $5\mu m$ in diameter

Distribution of particles in atmospheric air

Comparing ambient and indoor air quality

Table 2. Typical and high end levels of some indoor air contaminants and the
contributions of the indoor sources to both the typical and the high end indoor
air exposure levels in Europe, and comparison to WHO (I)AQ Guidelines
(WHO 2000 and 2006a).

Agent	Long term (I)AQG (µg/m³)	Typical (µg/m³)	Indoor source (%)	High end (μg/m³)	Indoor source (%)
PM2.5 (PM10/2)	10	10 - 40	30	100 - 300	> 90
CO (*	10	1 - 4	0	100 - 200	> 99
NO2	40	10 – 50	20	100 - 200	> 75
Formaldehyde	30 (**	20 – 80	> 90	200 - 800	> 99
Benzene	5	2 – 15	40	- 50	> 75
Naphthalene	10	1 – 3	30	- 1000	> 99.9
Radon (Bq/m3)(***	200	20 - 100	> 90	- 100 000	> 99.9

Source: Promoting actions for healthy indoor air (IAIAQ) 2011

EnVIE project (2003-2008) published in 2010

- 55 month project co-funded by the European Commission
- The aim of the EnVIE project was to increase the understanding of the Europe-wide public health impacts of indoor air quality by identifying the most widespread and significant indoor causes for these health impacts and evaluating the existing and optional building and housing related policies for controlling them
- It addressed in particular how indoor air quality might contribute to the observed rise in asthma and respiratory allergy, together with other acute and chronic health impacts
- Small scale extension and update titled 'Promoting actions for healthy indoor air' (IAIAQ) in 2011

EnVIE method

2. Exposures	Tobacco	Combustion Particles	CO	Radon	Dampness, mold, dust mites,bio- aerosols	(S)VOCs Indoor chemistry products
Allergic and Asthma symptoms	•	•			•	•
Lung Cancer	۲	٠		۲		
Chronic obstructive pulmonary disease	•	•			٠	
Airborne respiratory infections	۲	٠			٠	
Cardiovascular morbidity and mortality	۲	۲	•			
Odour and irritation	۲	•			٠	•
3. Causes & Sou	rces –			- 4.	Policies	5
Outdoor Air		•	•		•	•
Building / Equipment / Ventilaton	•	۲		•	۲	•
Consumer Products		۲				٠
Occupant behaviour & maintenance	۲	٠		۲	•	٠

Different colours degrees •• mean different levels of impact. Out of ENVIE scope.

<u>Explanatory note</u>: Different degrees of colours mean different levels of impact and/or out of the scope in EnVIE. Tobacco smoke is not addressed here because of the recent bans and even more because, if considered it will tend to hide all other impacts. Outdoor air was not object of EnVIE because it is covered by actual existent European air quality policies that control urban outdoor air concentrations.

Nine stressors assessed in six European countries

Non-discounted values		Certainty of the assessment					
		High	Medium	Low			
pact	High	Particulate air pollution (8000-10 000)					
ic health imp	Medium	Second hand smoke (600-1200) Radon (600-900)	Traffic noise (500-1100) Lead (100-500)* Ozone (40-200)	Dioxins (<500)			
Pub	Low	Benzene (2-4)		Formaldehyde			

FIGURE 4-1. Relative public health impact of the selected environmental stressors in undiscounted un-ageweighted DALYs per population of a million in the participating countries. Numerical ranges reflect quantitative uncertainty in the average estimate. Variability between countries is in many cases much larger. (* =numerical model used in estimating threshold exceedances).

Source: European Perspectives on Environmental Burden of Disease (2011)

What is a DALY?

The **disability-adjusted life year (DALY)** is a measure of overall disease burden, expressed as the number of years lost due to ill-health, disability or early death. Originally developed by the World Health Organisation it is becoming increasingly common in the field of public health and health impact assessment (HIA)

Effects: Contribution of 'non-ideal' IAQ to symptom and disease burden

Source: EnVIE project 2010

Clean Air in London

Exposures: Contribution of indoor air exposures to symptom and disease burden

Figure 5. Contribution of indoor air exposures to symptom and disease burden in Europe, DALYs per year [thousands]. ETS is not included.

Source: EnVIE project 2010

London - 13 October 2011

Clean Air in London

Sources: Contribution of sources of indoor air pollution to symptom and disease burden

Figure 6. Contribution of the sources of indoor air pollution to symptom and disease burden in Europe, DALYs per year (thousands). ETS is not included.

Source: EnVIE project 2010

London - 13 October 2011

Clean Air in London

Exposures: Cost impact of indoor air pollution

Source: Estimate provided by Gary Raw at 'Environmental Product Policy and IAQ' meeting in Brussels on 23-24 September 2010

Sources: Cost impact of indoor air pollution

Billion € per year

Source: Estimate provided by Gary Raw at 'Environmental Product Policy and IAQ' meeting in Brussels on 23-24 September 2010

Effects: Contribution of 'non-ideal' IAQ to symptom and disease burden by country

Table 4. Contribution of non-ideal IAQ to symptom and disease burden in the European countries, DALYs¹⁾ per year (thousands). ETS not included.

kDALY/year per country, diseases and symptom avoidable by ideal IAQ in Europe	Asthma	Cardiovascular diseases	COPD	Lung (& trachea & bronchus) cancer	Sick building syndrome, sensory irritation	Respiratory infectious diseases	Acute CO toxication	UK among three for:
Belgium	12	10	2	3	12	1	2	Asthma
Czech Republic	15	22	1,5	6	11	1	3	
Denmark	5	5	1,4	1,3	6	0,3	3	• COPD
Finland	7	3	0,2	1,3	6	0,6	0,9	 Sick but
France	96	55	8	19	67	6	5	SICK DU
Germany	90	88	9	18	86	8	22	syndro
Greece	7	19	0,9	3	12	1,1	3	, Deseive
Ireland	7	5	0,7	1,2	5	0,4	1,2	 Respira
Italy	42	92	8	17	63	4	16	infectio
Netherlands	28	18	3	3	17	2	1,1	meen
Poland	45	136	3	15	40	3	10	
Portugal	21	16	2	2	11	2	1,1	
Slovakia	5	12	0,3	2	6	0,6	1,5	Bold = UK
Sweden	9	7	0,7	2	10	0,6	1,1	in F
United Kingdom	138	56	9	7	64	7	9	
Remaining EU- countries ²⁾	132	131	14	24	104	10	21	
TOTAL	661	674	64	125	517	48	101	

worst

- а
- ilding me
- atory ous diseases

1) DALY - Disability-Adjusted Life Year

²⁾ Austria, Bulgaria, Cyprus, Estonia, Hungary, Latvia, Lithuania, Luxembourg, Malta, Romania, Slovenia, Spain

Source: EnVIE project 2010

worst EU 27

Exposures: Contribution of indoor air exposures to symptom and disease burden

Table 5. Contribution of indoor air exposures to symptom and disease burden in the European countries, DALYs¹⁾ per year (thousands). ETS is not included.

kDALY/year per country and exposure avoidable by ideal IAQ in Europe	Combustion products	Bio- aerosols	Volatile Organic Compounds	Radon	Pathogens	co	
Belgium Czech Republic Denmark Finland France Germany Greece Ireland Italy Netherlands Poland Portugal Slovakia Sweden United Kingdom Remaining EU-countries ²	16 28 8 4 90 128 26 7 126 31 164 21 15 11 88 186	14 15 7 9 99 105 7 7 7 37 31 45 21 5 10 139 137	7 8 2 3 42 45 8 3 47 6 22 8 3 6 44 65	2 5 1 1,2 13 13 2 1 12 1,3 7 2 1,5 2 4 16	2 2 0,6 1,1 12 16 2 0,9 7 3 7 3 1,2 1,2 14 21	2 3 0,9 5 22 3 1,2 16 1,1 10 1,1 1,5 1,1 9 21	 UK among worst three for: Bio-aerosols Volatile organic compounds Pathogens Bold = UK worst in EU 27
TOTAL	950	688	321	84	95	101	

1) DALY - Disability-Adjusted Life Year

²⁾ Austria, Bulgaria, Cyprus, Estonia, Hungary, Latvia, Lithuania, Luxembourg, Malta, Romania, Slovenia, Spain

Source: EnVIE project 2010

Sources: Contribution of sources of indoor air pollution to symptom and disease burden

Table 6. Contribution of the sources of indoor air pollution to symptom and disease burden in the European countries, DALYs¹⁾ per year (thousands). ETS is not included.

kDALY/year per country and source avoidable by ideal IAQ in Europe	Ambie nt air quality	Water systems, dampne s and mould	Heating and combusti on equipme nt/ applianc es	Buildi ng site (rado n from soil)	Furnish ing, decorat ion materia ls and electric applian ces	Ventilat ion and conditio ning systems	Cleani ng and other househ old produ cts	Buildi ng mater ials
Belgium	21	7	5	2	3	11	2	07
Czech Republic	31	8	8	5	3	1.2	2	07
Denmark	10	3	5	1	0.8	0.5	04	0.2
Finland	8	5	2	1.2	1.2	0.6	0.7	0.3
France	127	50	23	13	17	7	10	4
Germany	161	55	48	13	18	7	10	4
Greece	25	5	8	2	3	0,8	2	0,7
Ireland	10	3	3	1	1,4	0,5	0,8	0,3
Italy	125	20	41	12	19	4	11	4
Netherlands	40	16	7	1,3	3	2	1,5	0,6
Poland	153	24	43	7	9	4	5	2
Portugal	29	11	5	2	3	2	2	0,6
Slovakia	15	3	4	1,5	1,4	0,5	0,8	0,3
Sweden	15	5	3	2	3	0,8	1,4	0,6
United Kingdom	147	68	27	4	18	10	10	4
Remaining EU-								
countries 2)	226	72	58	16	27	10	15	6
TOTAL	1143	355	291	84	131	52	73	29

¹⁾ DALY - Disability-Adjusted Life Year

²⁾ Austria, Bulgaria, Cyprus, Estonia, Hungary, Latvia, Lithuania, Luxembourg, Malta, Romania, Slovenia, Spain

Source: EnVIE project 2010

London - 13 October 2011

UK among worst three for:

- Ambient air quality
- Water systems, dampness and mould
- Furnishing, decoration ۲ materials and electric appliances
- Ventilation and • conditioning systems
- Cleaning and other household products
- **Building materials**

Bold = UK worst in EU 27

EnVIE policy assessment: The approach

This diagram is by no means exhaustive. It aims to illustrate the wide spectrum of policy tools (directives, guidelines,...), policy making levels (WHO, EU, member states, ...) and sour (outdoor air, building, consumer products,...). It also underlines the must strategic axes for policy making in the future.

Figure 3. Existing and proposed policies/legislation

Source: EnVIE project 2010

EnVIE policy assessment: New policies needed

- General policies e.g. build public understanding
- Building construction e.g. integrate IAQ into policies on urban development. Develop moisture control guidelines for buildings
- Ventilation e.g. regularly inspect and maintain all heating, ventilation and air conditioning (HVAC) systems. Include EN 13779 compliant air filters in HVAC systems. Ban all unflued combustion heaters. Integrate with energy performance inspections
- Consumer products e.g. testing and labelling of products
- Occupant behaviour and operation and maintenance e.g. best practice manuals for major buildings. Address further ETS

Source: EnVIE project 2010

EnVIE policy assessment: The detail

Table 2 Generalised table of the new policies needs to improve indoor air quality in buildings

Focus area	Policy or action	Type of action				
		Legislative actions	Standards and guidelines	Information		
General	Disseminate information concerning IAQ and related risks and their prevention for general	To be mentioned in all		Use professional organisation and		
policies	public and professionals.	legislative actions dealing with		citizens organisations		
		the built environment.				
	Develop European harmonised IAQ monitoring protocols and techniques to ensure	Recast EPBD related actions	CEN standards	Technical guidance documents for		
	comparability across Europe for the needs of surveys as well as compliance assessments			survey design, sampling and		
				analyses		
	Develop health surveys to verify the efficacy of the preventive measures.					
	Define indoor exposure guidelines, in particular for dwellings and schools					
Building	Integrate IAQ in policies on urban development, regarding energy supply systems, and	Sustainable urban planning		Guidelines of principles to		
construction	zoning. Because ambient air quality (AAQ) forms the basis for IAQ use energy supply that			administrators, planners and		
	minimises ambient air pollution and plan and design for low energy buildings.			architects		
	Develop and apply European harmonised protocols for IAQ testing, reporting and labelling	REACH and CPD related	CEN standards			
	for building materials, equipment and products.	actions				
	Develop European moisture control guidelines for building design, use and maintenance, to	CPD related actions	CEN standards			
	prevent persistent dampness and hidden and visible mould growth	European guidelines	Design guidelines			
		National building codes				
	Apply radon safe design and construction criteria for buildings in radon risk areas.	European guidelines	CEN standards	Design guidelines to professionals		
		National building codes				
Ventilation	Develop European health based ventilation guidelines to control exposure to pollutants and	European guidelines	CEN standards	Design guidelines to professionals		
	moisture from indoor and outdoor sources	National building codes				
	Mandate regular inspection and maintenance for all ventilation and air conditioning	Recast of FPBD related actions	CFN standards	Guidelines or professionals		
	systems (integrate with energy performance inspections)	European guidelines	C211 Standards	Condennes of professionals		
		National building codes				
	Ban all unflued combustion heaters, equip gas stoves with exhaust hoods and fans, mandate	European directive	CEN standards	Design guidelines to professionals		
	CO detectors and regular maintenance/inspection for all combustion devices.	-	Design guidelines			
Consumer	Develop and apply European harmonised protocols for IAQ testing, for consumer products	GPSD related actions	CEN standards			
products						
Occupant	Provide systematic documentation and operating, inspection and maintenance manuals for		CEN standard	Guidelines or professionals		
behaviour	major buildings and installations which may deteriorate IAQ or cause health risks			-		
and	Integrate IAQ knowledge, criteria nad values in all urban planning and building					
Operation	sustainable approach and performance assessment.					
and	Develop policy and methods to integrate IAQ into the energy performance evaluation and	Recast EPBD	CEN standard	Guidelines or professionals		
maintenance	audits of buildings					
	Ban smoking in all indoor spaces under public jurisdiction	European directive				
	Develop policies to protecting children from ETS at home	European policy		Information campaign		
	Develop information for pressure and action to encourage smoking bans in public housing			Information campaign		
	and apartment buildings.					
1			1			

Source: EnVIE project 2010 p71

IAIAQ policy assessment: The opportunities

Figure 9. Distributions of the national public health benefit potentials of the 10 assessed policies in the 10^{th} year of implementation (DALY/year*million) within the EU-26 countries. Levels from left to right: min – 1^{st} quartile – median – third quartile – max.

Source: Promoting actions for healthy indoor air (IAIAQ) 2011

Particle filters of different efficiency

Source: Camfil Farr

London - 13 October 2011

Air filter groups and classes

Group	Filter class	Example of use	Average collection efficiency for the most penetrating particle size (MPPS) %	Average efficiency for 0.4 μm particles %	Average arrestance of dust %
Coarse	G4	Warehouses			Over 90
Medium	M5	Protection of ventilation systems		40-59	
	M6			60-79	
Fine	F7	Schools		80-89 (min 35)	
	F8	Laboratories		90-94 (min 55)	
	F9	Healthcare		95 and above (min 70)	
Efficiency	E10	Precision tooling	85		
particulate filters	E11		95		
	E12		99.5		
High efficiency particulate filters	H13 and H14	Operating theatres	Over 99.95		
Ultra low penetration air filters	U15, U16 and U17	Space craft	Over 99.9995		

Gas filters – activated carbon/charcoal

Key issues include:

- Charcoal's ability to retain gas molecules on their surface
- This capacity varies for different gases and charcoal quality
- Gas concentration
- Contact time

Source: Camfil Farr

European standard EN 13779 since April 2007 for non-residential buildings

Outdoor Air Quality (ODA)		Indoor Air Quality (IDA)				
		IDA 1 (High)	IDA 2 (Medium)	IDA 3 (Moderate)	IDA 4 (Low)	
ution	ODA 1 eg countryside	F9	F8	F7	F5	
Increasing pollu	ODA 2 eg smaller towns	F7 + F9	F6 + F8	F5 + F7	F5 + F6	
	ODA 3 eg city centres	F7 + GF + F9	F7 + GF + F9	F5 + F7	F5 + F6	

GF = Gas filter (carbon filter) and/or chemical filter.

Table based on appendix A.3 "Use of air filters" in European standard EN 13779

Other benefits: Energy efficiency and cost savings

Source: Camfil Farr

Reminder: Health impacts of poor air quality

Photo of soot particles in lung tissue Photo: Lennart Nilsson A white blood corpuscle from the body's immune system (blue) tries to attack a soot particle and consume it Photo: Lennart Nilsson

Reminder: Benefits of air filters

Photo: Lennart Nilsson

New campaign

- Campaign to build understanding of indoor air quality, initially in London. Launched today!
- We can protect ourselves from 90% of air pollutants for up to 90% of the time
- Ask one question: "Does our ventilation system include regularly maintained air filters that comply with European guideline EN 13779 and, if not, why not?"
- 'Year of Air' in 2013: seeking continuity and the further tightening of health and legal protections for ambient and indoor air quality
- Working with CityAir and others to communicate the need for action to address poor ambient and indoor air quality
- Willing to meet any of you to discuss action on poor air quality
- Camfil Farr Road Show due to return to London in w/c 21 May 2012

We can protect ourselves from 90% of air pollutants for up to 90% of the time

If your office has a mechanical ventilation system or air conditioning (i.e. it is likely to contain the necessary ducting) please ask your employer:

> "Does our ventilation system include regularly maintained air filters that comply with European guideline EN 13779 and, if not, why not?"

> Any questions: visit <u>www.camfilfarr.co.uk</u> or call 01706 238 000

Photo of soot particles in air filter

Photo: Lennart Nilsson

Summary

- Outdoor (or ambient) air quality is poor in cities
- Indoor sources (e.g. cooking) can make it worse inside
- Some of the basics: technical matters; relative size; and numbers, surface area and mass
- Health impacts: effects; exposures; sources; and costs
- Policy measures than could make a positive difference
- Current standards for air filters
- New campaign supported by Camfil Farr: let's start by asking one question

Building understanding of the dangers of poor indoor air quality and actions to take or 'Plan B': seal the building and get a good filter

Camfil Farr Road Show: London 13 October 2011

Simon Birkett, Founder and Director, Clean Air in London <u>www.cleanairinlondon.org</u> <u>www.twitter.com/CleanAirLondon</u>

References

Camfil Farr http://www.camfilfarr.co.uk/

EnVIE project 2003-2008 (2010)

http://paginas.fe.up.pt/~envie/documents/finalreports/Final%20Reports%20Publishable/Publishab le%20final%20activity%20report.pdf

'Indoor air quality: health effects' by Gary Raw at Environmental Product Policy and Indoor Air Quality meeting 23-24 September 2010

http://www.eutrio.be/files/bveu/Session1.3.pdf

Promoting actions for healthy indoor air (IAIAQ) (2011) <u>http://ec.europa.eu/health/healthy_environments/docs/env_iaiaq.pdf</u>

European Perspectives on Environmental Burden of Diseases (2011) http://www.thl.fi/thl-client/pdfs/b75f6999-e7c4-4550-a939-3bccb19e41c1

EN 13779: 2007 http://www.freedom2choose.info/docs/EC Standard For Ventilation.pdf

London - 13 October 2011

